Divide-and-Conquer

- **Divide** the problem into a number of sub-problems
 - Similar sub-problems of smaller size
- **Conquer** the sub-problems
 - Solve the sub-problems <u>recursively</u>
 - Sub-problem size small enough \Rightarrow solve the problems in straightforward manner
- **Combine** the solutions of the sub-problems
 - Obtain the solution for the original problem

Merge Sort Approach

- To sort an array A[p...r]:
- Divide
 - Divide the n-element sequence to be sorted into two subsequences of n/2 elements each
- Conquer
 - Sort the subsequences recursively using merge sort
 - When the size of the sequences is 1 there is nothing more to do
- Combine
 - Merge the two sorted subsequences

Merge Sort

<i>Alg.:</i> MERGE-SORT (A, p, r)
if p < r
then q ← └(p + r)/2┘
MERGE-SORT(A, p, q)
MERGE-SORT(A,q+1,r)
MERGE(A, p, q, r)

р			q					r
	1	2	3	4	5	6	7	8
	5	2	4	7	1	3	2	6

Check for base case

▷ Divide

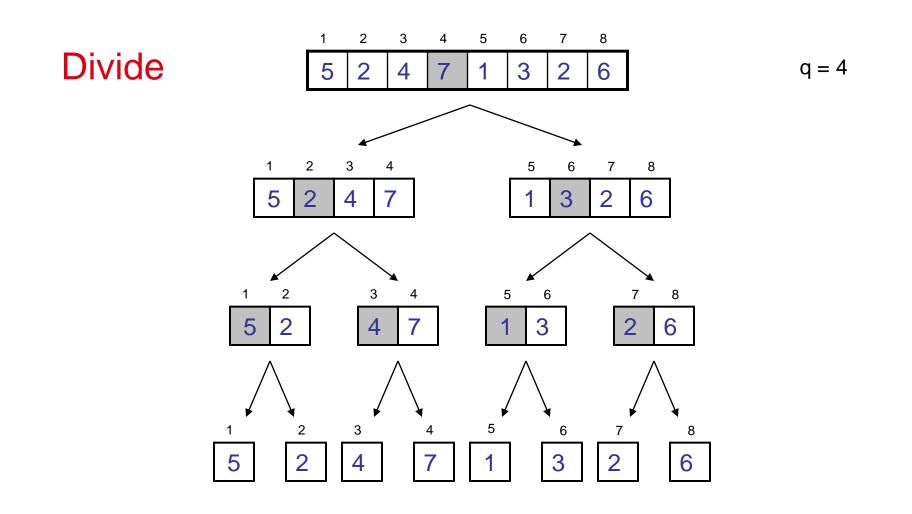
▷ Conquer

▷ Conquer

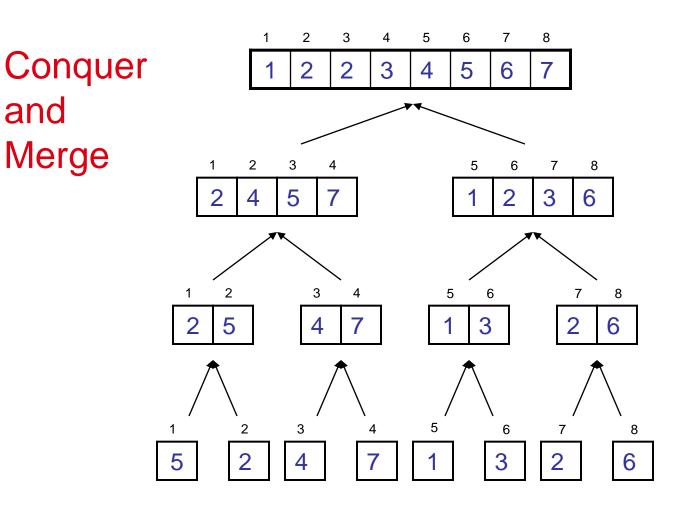
▷ Combine

• Initial call: MERGE-SORT(A, 1, n)

Example – n Power of 2

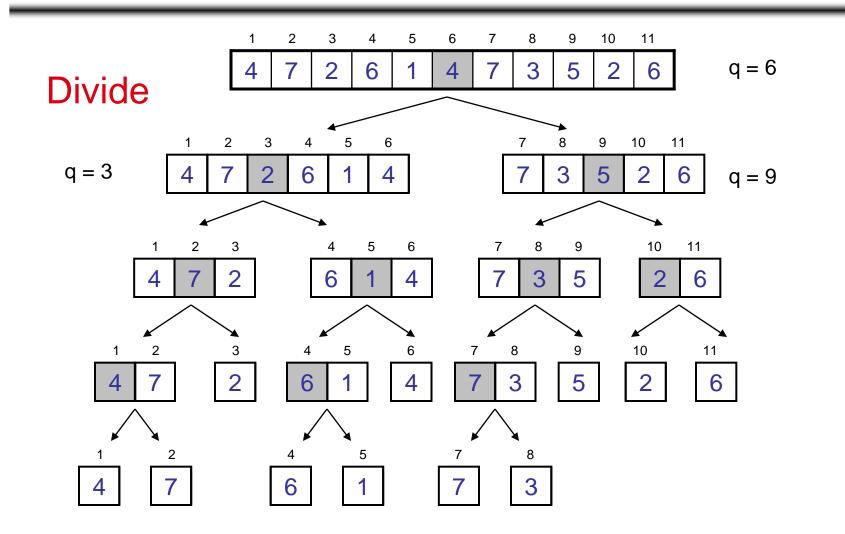


Example – n Power of 2

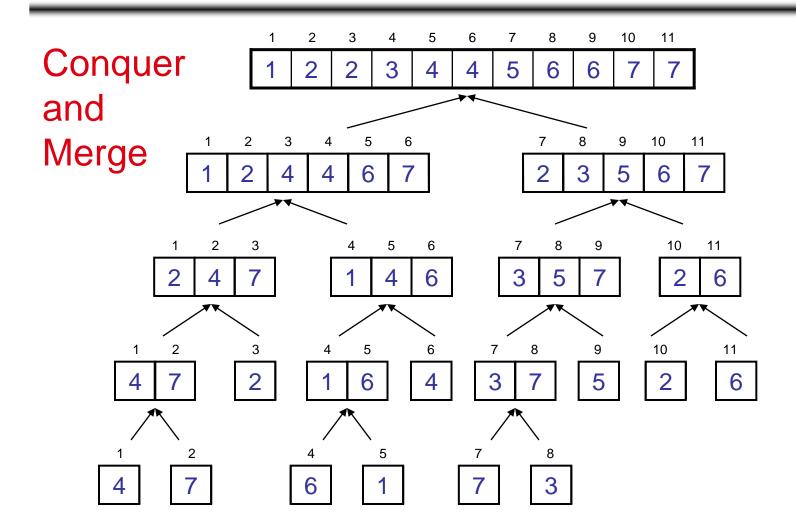


5

Example – n Not a Power of 2

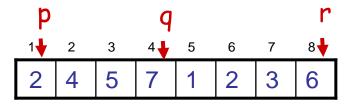


Example – n Not a Power of 2



7

Merging

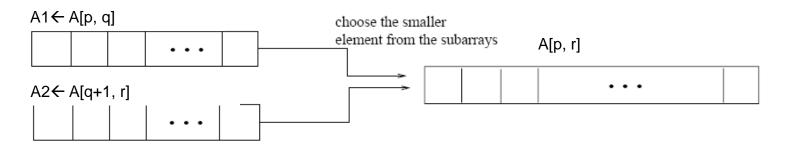


- Input: Array A and indices p, q, r such that $p \le q < r$
 - Subarrays A[p . . q] and A[q + 1 . . r] are sorted
- Output: One single sorted subarray A[p . . r]

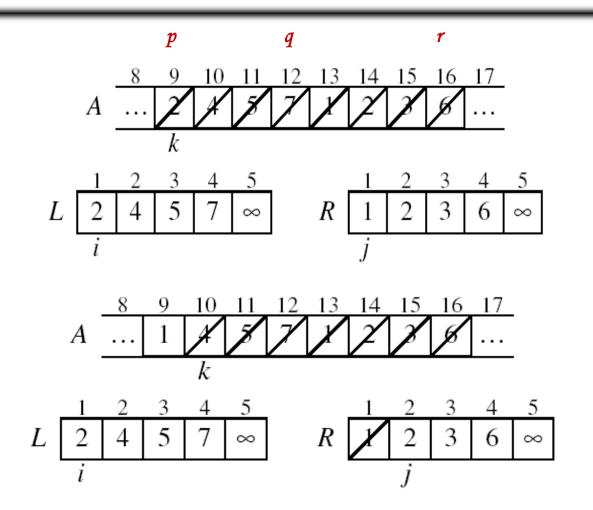
Merging

р

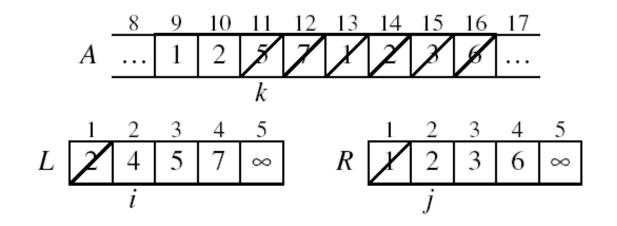
- Idea for merging:
 - Two piles of sorted cards
 - Choose the smaller of the two top cards
 - Remove it and place it in the output pile
 - Repeat the process until one pile is empty
 - Take the remaining input pile and place it face-down onto the output pile

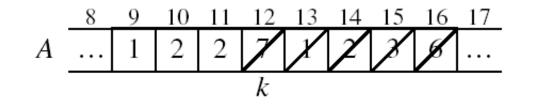


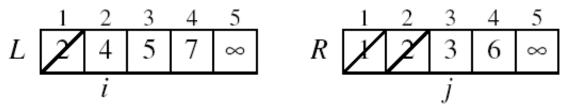
Example: MERGE(A, 9, 12, 16)



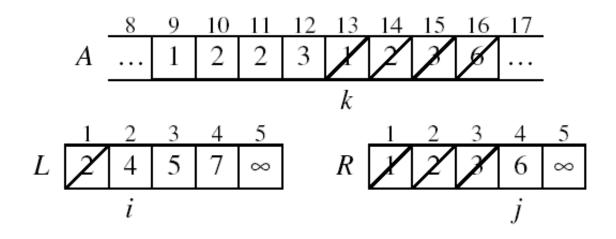
Example: MERGE(A, 9, 12, 16)

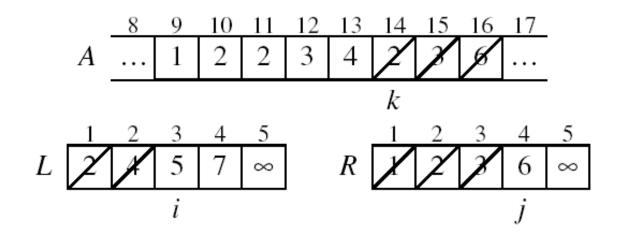




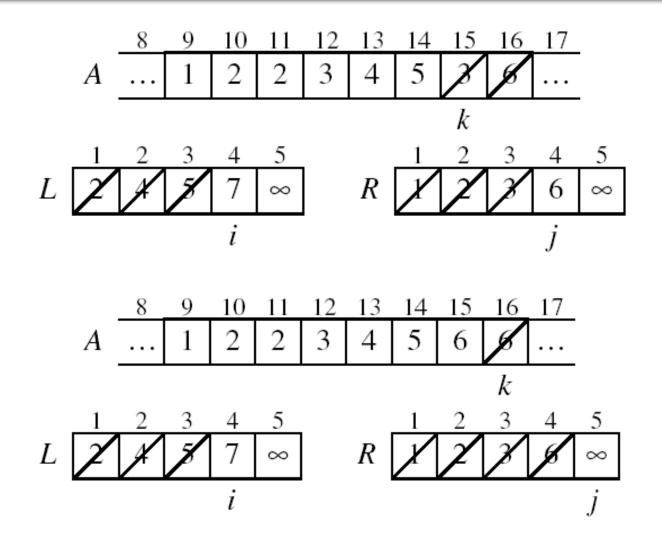


Example (cont.)

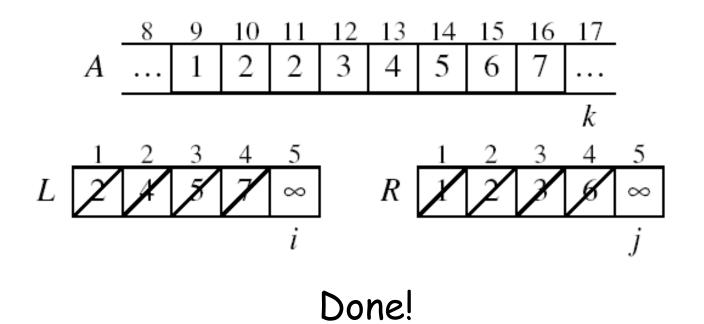




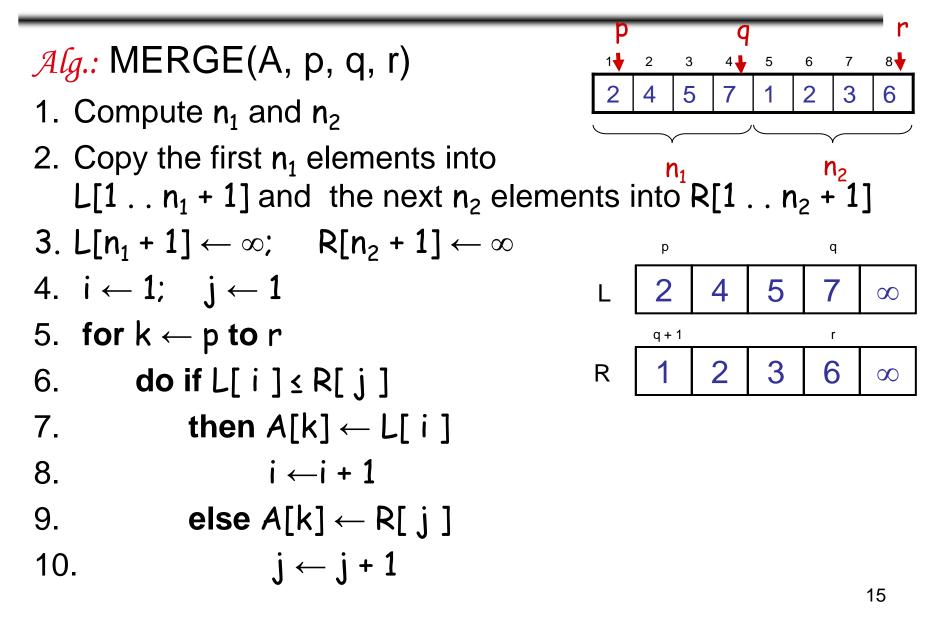
Example (cont.)



Example (cont.)

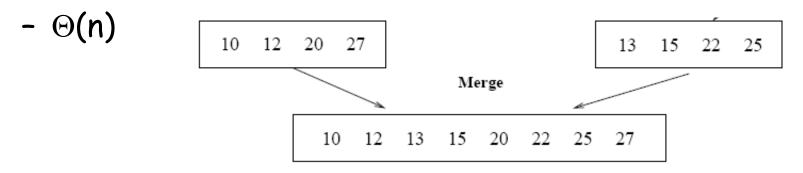


Merge - Pseudocode



Running Time of Merge (assume last **for** loop)

- Initialization (copying into temporary arrays):
 - $\Theta(n_1 + n_2) = \Theta(n)$
- Adding the elements to the final array:
 - n iterations, each taking constant time $\Rightarrow \Theta(n)$
- Total time for Merge:



Analyzing Divide-and Conquer Algorithms

- The recurrence is based on the three steps of the paradigm:
 - T(n) running time on a problem of size n
 - Divide the problem into a subproblems, each of size
 n/b: takes D(n)
 - Conquer (solve) the subproblems aT(n/b)
 - Combine the solutions C(n)

 $T(n) = \begin{cases} \Theta(1) & \text{if } n \leq c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$

MERGE-SORT Running Time

• Divide:

- compute q as the average of p and r: $D(n) = \Theta(1)$

• Conquer:

- recursively solve 2 subproblems, each of size $n/2 \Rightarrow 2T(n/2)$

• Combine:

- MERGE on an n-element subarray takes $\Theta(n)$ time $\Rightarrow C(n) = \Theta(n)$ $\begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$

Solve the Recurrence

T(n) =
$$\begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Use Master's Theorem:

Compare n with f(n) = cnCase 2: $T(n) = \Theta(nlgn)$

Merge Sort - Discussion

- Running time insensitive of the input
- Advantages:
 - Guaranteed to run in _(nlgn)
- Disadvantage
 - Requires extra space ≈N

Sorting Challenge 1

Problem: Sort a file of huge records with tiny keys

Example application: Reorganize your MP-3 files

Which method to use?

- A. merge sort, guaranteed to run in time ~NIgN
- B. selection sort
- C. bubble sort
- D. a custom algorithm for huge records/tiny keys
- E. insertion sort

Sorting Files with Huge Records and Small Keys

- Insertion sort or bubble sort?
 - NO, too many exchanges
- Selection sort?
 - YES, it takes linear time for exchanges
- Merge sort or custom method?
 - Probably not: selection sort simpler, does less swaps

Sorting Challenge 2

Problem: Sort a huge randomly-ordered file of small records

Application: Process transaction record for a phone company

Which sorting method to use?

- A. Bubble sort
- B. Selection sort
- C. Mergesort guaranteed to run in time ~NIgN
- D. Insertion sort

Sorting Huge, Randomly - Ordered Files

- Selection sort?
 - NO, always takes quadratic time
- Bubble sort?
 - NO, quadratic time for randomly-ordered keys
- Insertion sort?
 - NO, quadratic time for randomly-ordered keys
- Mergesort?
 - YES, it is designed for this problem

Sorting Challenge 3

Problem: sort a file that is already almost in order

Applications:

- Re-sort a huge database after a few changes
- Doublecheck that someone else sorted a file

Which sorting method to use?

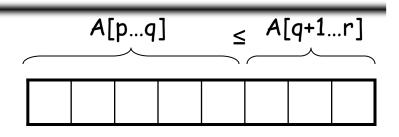
- A. Mergesort, guaranteed to run in time ~NIgN
- B. Selection sort
- C. Bubble sort
- D. A custom algorithm for almost in-order files
- E. Insertion sort

Sorting Files That are Almost in Order

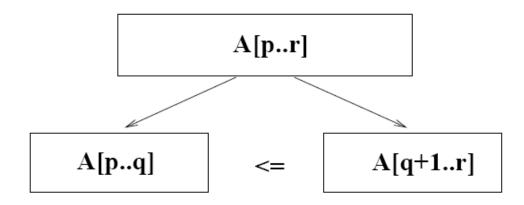
- Selection sort?
 - NO, always takes quadratic time
- Bubble sort?
 - NO, bad for some definitions of "almost in order"
 - Ex: BCDEFGHIJKLMNOPQRSTUVWXYZA
- Insertion sort?
 - YES, takes linear time for most definitions of "almost in order"
- Mergesort or custom method?
 - Probably not: insertion sort simpler and faster

Quicksort

- Sort an array A[p...r]
- Divide



- Partition the array A into 2 subarrays A[p..q] and A[q+1..r], such that each element of A[p..q] is smaller than or equal to each element in A[q+1..r]
- Need to find index q to partition the array



Quicksort

• Conquer

- Recursively sort A[p..q] and A[q+1..r] using Quicksort

Combine

- Trivial: the arrays are sorted in place
- No additional work is required to combine them
- The entire array is now sorted

QUICKSORT

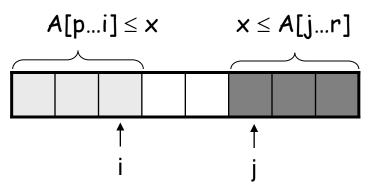
Alg.: QUICKSORT(A, p, r) Initially: p=1, r=n if p < r then $q \leftarrow \text{PARTITION}(A, p, r)$ QUICKSORT (A, p, q)QUICKSORT (A, q+1, r)

Recurrence:

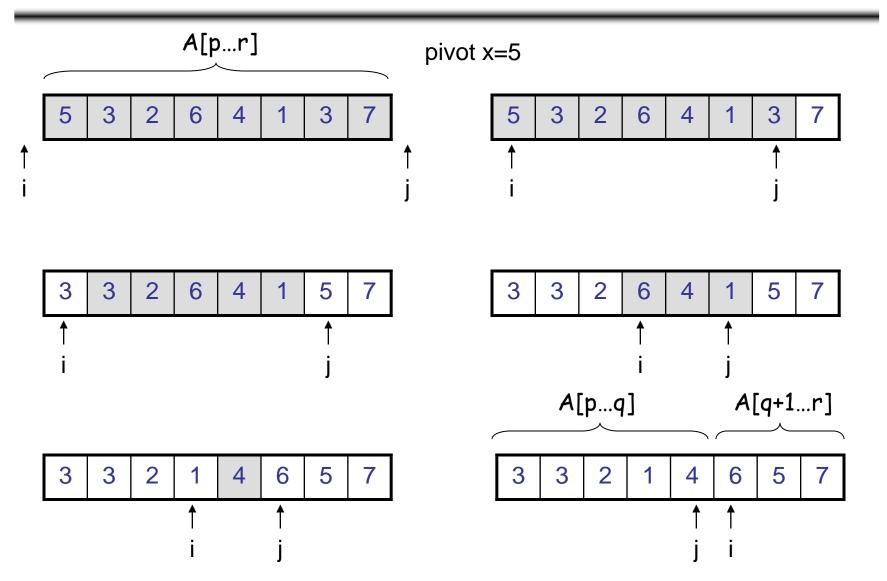
 $T(n) = T(q) + T(n - q) + f(n) \quad (f(n) \text{ depends on PARTITION()})$

Partitioning the Array

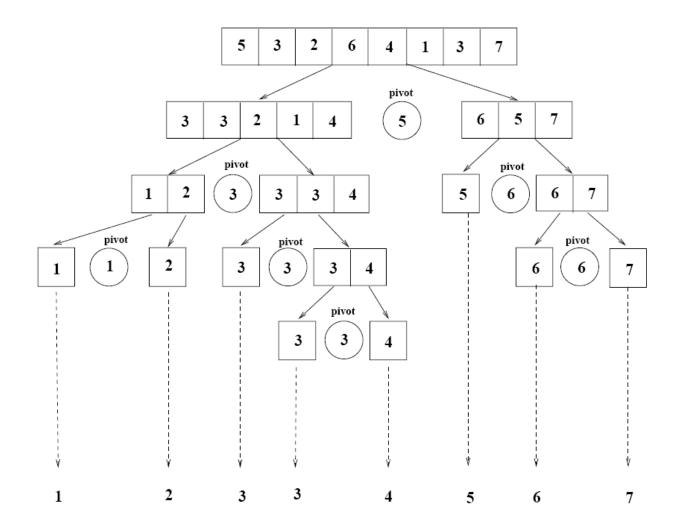
- Choosing PARTITION()
 - There are different ways to do this
 - Each has its own advantages/disadvantages
- Hoare partition (see prob. 7-1, page 159)
 - Select a pivot element x around which to partition
 - Grows two regions
 - $A[p...i] \le x$
 - $x \le A[j...r]$



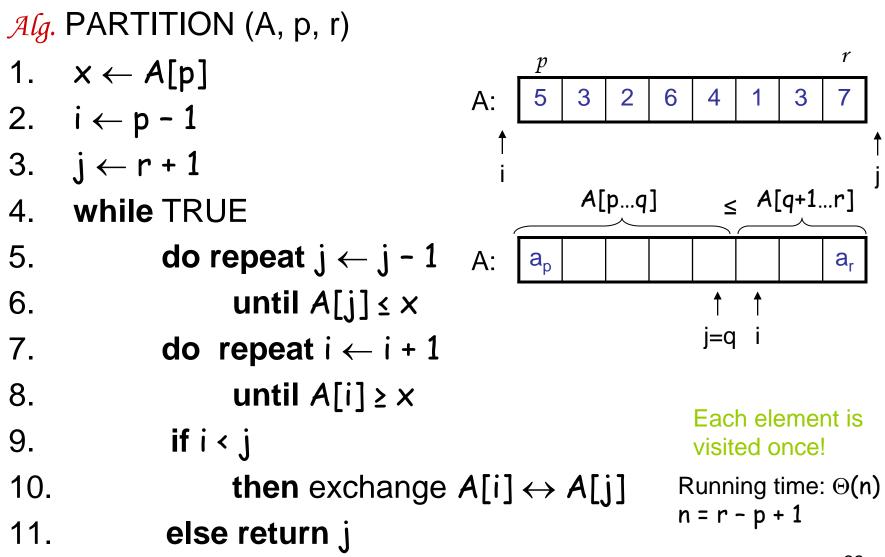
Example



Example



Partitioning the Array

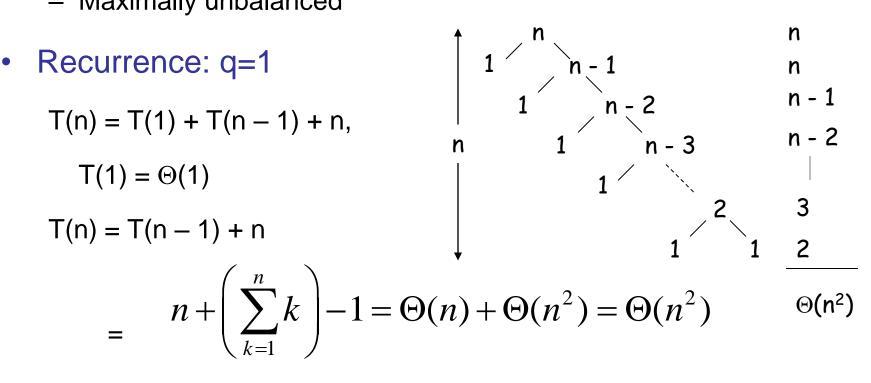


Recurrence

Alg.: QUICKSORT(A, p, r) Initially: p=1, r=n if p < r then $q \leftarrow \text{PARTITION}(A, p, r)$ QUICKSORT (A, p, q) QUICKSORT (A, q+1, r) **Recurrence:** T(n) = T(q) + T(n - q) + n

Worst Case Partitioning

- Worst-case partitioning
 - One region has one element and the other has n 1 elements
 - Maximally unbalanced

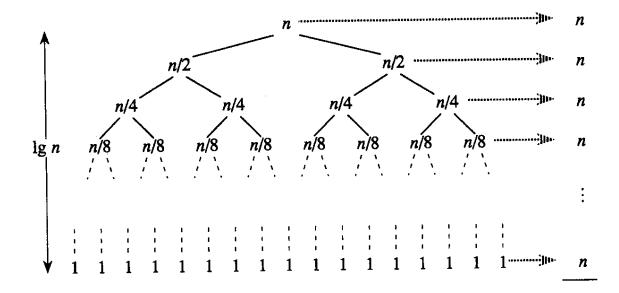


When does the worst case happen?

Best Case Partitioning

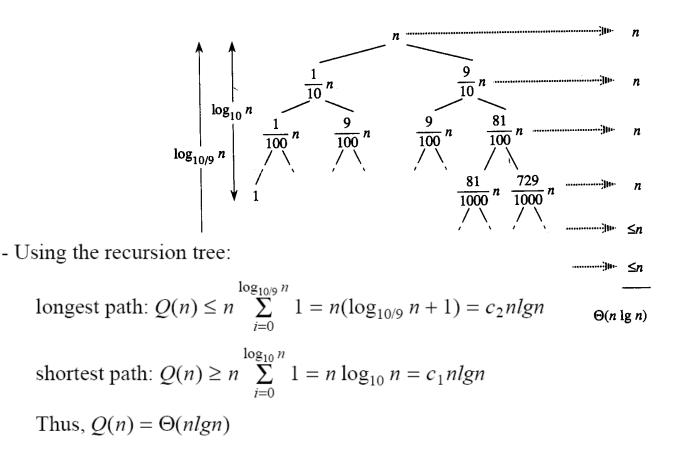
- Best-case partitioning
 - Partitioning produces two regions of size n/2
- Recurrence: q=n/2

 $T(n) = 2T(n/2) + \Theta(n)$ T(n) = $\Theta(nlgn)$ (Master theorem)



Case Between Worst and Best

9-to-1 proportional split
 Q(n) = Q(9n/10) + Q(n/10) + n



How does partition affect performance?

- Any splitting of constant proportionality yields $\Theta(nlgn)$ time !!!

- Consider the (1 : n - 1) splitting:

ratio=1/(n-1) not a constant !!!

- Consider the (n/2 : n/2) splitting:

ratio=(n/2)/(n/2) = 1 it is a constant !!

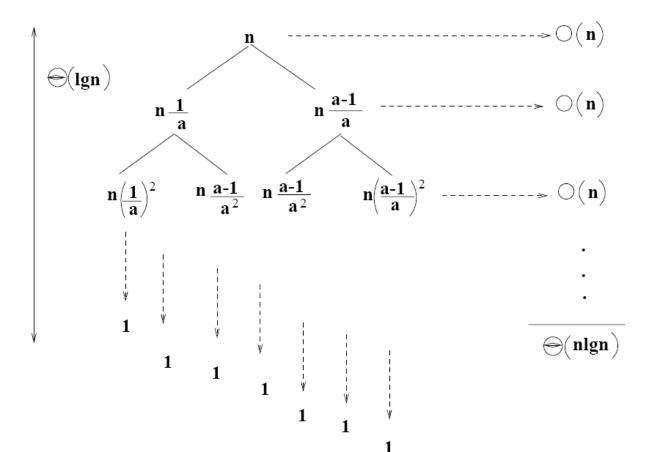
- Consider the (9n/10 : n/10) splitting:

ratio=(9n/10)/(n/10) = 9 it is a constant !!

How does partition affect performance?

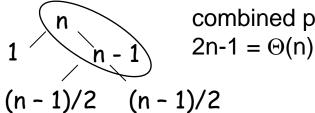
- Any ((a-1)n/a : n/a) splitting:

ratio=((a-1)n/a)/(n/a) = a - 1 it is a constant !!



Performance of Quicksort

- Average case
 - All permutations of the input numbers are equally likely
 - On a random input array, we will have a **mix** of well balanced and unbalanced splits
 - Good and bad splits are randomly distributed across throughout the tree



combined partitioning cost:

$$n$$
 partition $n = \Theta(n)$

ing cost:

Alternate of a good and a bad split

Nearly well balanced split

Running time of Quicksort when levels alternate between good and bad splits is O(nlqn)