Divide-and-Conquer

- Divide the problem into a number of sub-problems
- Similar sub-problems of smaller size
- Conquer the sub-problems
- Solve the sub-problems recursively
- Sub-problem size small enough \Rightarrow solve the problems in straightforward manner
- Combine the solutions of the sub-problems
- Obtain the solution for the original problem

Merge Sort Approach

- To sort an array A[p . . r]:
- Divide
- Divide the n-element sequence to be sorted into two subsequences of $n / 2$ elements each
- Conquer
- Sort the subsequences recursively using merge sort
- When the size of the sequences is 1 there is nothing more to do
- Combine
- Merge the two sorted subsequences

Merge Sort

Alg.: MERGE-SORT(A, p, r)
if $p<r$
then $q \leftarrow\lfloor(p+r) / 2\rfloor$
MERGE-SORT(A, p,q)
MERGE-SORT(A, q + 1, r)
$\operatorname{MERGE}(A, p, q, r)$

\triangleright Check for base case
\triangleright Divide
\triangleright Conquer
\triangleright Conquer
\triangleright Combine

- Initial call: MERGE-SORT(A, 1, n)

Example - n Power of 2

Divide

Example - n Power of 2

Conquer and Merge

Example - n Not a Power of 2

Example - n Not a Power of 2

Conquer and
Merge

1	2	3	4	5	6	7	8	9	10	
1	2	2	3	4	4	5	6	6	7	7

Merging

- Input: Array A and indices p, q, r such that $p \leq q<r$
- Subarrays $A[p \ldots q]$ and $A[q+1 \ldots r]$ are sorted
- Output: One single sorted subarray $A[p$. . r]

Merging

- Idea for merging:
- Two piles of sorted cards

- Choose the smaller of the two top cards
- Remove it and place it in the output pile
- Repeat the process until one pile is empty
- Take the remaining input pile and place it face-down onto the output pile

Example: MERGE(A, 9, 12, 16)

Example: MERGE(A, 9, 12, 16)

$$
\begin{aligned}
& A
\end{aligned}
$$

Example (cont.)

Example (cont.)

Example (cont.)

Done!

Merge - Pseudocode

Alg.: $\operatorname{MERGE}(\mathrm{A}, \mathrm{p}, \mathrm{q}, \mathrm{r})$

1. Compute n_{1} and n_{2}
2. Copy the first n_{1} elements into
$L\left[1 \ldots n_{1}+1\right]$ and the next n_{2} elements into $R\left[1 \ldots n_{2}+1\right]$
3. $L\left[n_{1}+1\right] \leftarrow \infty ; \quad R\left[n_{2}+1\right] \leftarrow \infty$
4. $i \leftarrow 1 ; j \leftarrow 1$
5. for $k \leftarrow p$ to r
6. do if $L[i] \leq R[j]$

7. \quad then $A[k] \leftarrow L[i]$
8.

$$
i \leftarrow i+1
$$

9.
10.

else $A[k] \leftarrow R[j]$
$j \leftarrow j+1$

Running Time of Merge (assume last for loop)

- Initialization (copying into temporary arrays):
$-\Theta\left(n_{1}+n_{2}\right)=\Theta(n)$
- Adding the elements to the final array:
$-n$ iterations, each taking constant time $\Rightarrow \Theta(n)$
- Total time for Merge:
$-\Theta(n)$

Analyzing Divide-and Conquer Algorithms

- The recurrence is based on the three steps of the paradigm:
- $T(n)$ - running time on a problem of size n
- Divide the problem into a subproblems, each of size n / b : takes $\mathrm{D}(\mathrm{n})$
- Conquer (solve) the subproblems $a T(n / b)$
- Combine the solutions $C(n)$

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq c \\ a T(n / b)+D(n)+C(n) & \text { otherwise }\end{cases}
$$

MERGE-SORT Running Time

- Divide:
- compute q as the average of p and $r: D(n)=\Theta(1)$
- Conquer:
- recursively solve 2 subproblems, each of size $n / 2$ $\Rightarrow 2 \mathrm{~T}(\mathrm{n} / 2)$
- Combine:
- MERGE on an n-element subarray takes $\Theta(n)$ time $\Rightarrow C(\mathrm{n})=\Theta(\mathrm{n})$

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}
$$

Solve the Recurrence

$$
T(n)= \begin{cases}c & \text { if } n=1 \\ 2 T(n / 2)+c n & \text { if } n>1\end{cases}
$$

Use Master's Theorem:

Compare n with $f(n)=c n$
Case 2: $T(n)=\Theta(n \lg n)$

Merge Sort - Discussion

- Running time insensitive of the input
- Advantages:
- Guaranteed to run in Θ (nlgn)
- Disadvantage
- Requires extra space $\approx \mathrm{N}$

Sorting Challenge 1

Problem: Sort a file of huge records with tiny keys

Example application: Reorganize your MP-3 files

Which method to use?
A. merge sort, guaranteed to run in time $\sim \mathrm{NlgN}$
B. selection sort
C. bubble sort
D. a custom algorithm for huge records/tiny keys
E. insertion sort

Sorting Files with Huge Records and Small Keys

- Insertion sort or bubble sort?
- NO, too many exchanges
- Selection sort?
- YES, it takes linear time for exchanges
- Merge sort or custom method?
- Probably not: selection sort simpler, does less swaps

Sorting Challenge 2

Problem: Sort a huge randomly-ordered file of small records
Application: Process transaction record for a phone company

Which sorting method to use?
A. Bubble sort
B. Selection sort
C. Mergesort guaranteed to run in time $\sim \mathrm{NlgN}$
D. Insertion sort

Sorting Huge, Randomly - Ordered Files

- Selection sort?
- NO, always takes quadratic time
- Bubble sort?
- NO, quadratic time for randomly-ordered keys
- Insertion sort?
- NO, quadratic time for randomly-ordered keys
- Mergesort?
- YES, it is designed for this problem

Sorting Challenge 3

Problem: sort a file that is already almost in order
Applications:

- Re-sort a huge database after a few changes
- Doublecheck that someone else sorted a file

Which sorting method to use?
A. Mergesort, guaranteed to run in time $\sim \mathrm{NlgN}$
B. Selection sort
C. Bubble sort
D. A custom algorithm for almost in-order files
E. Insertion sort

Sorting Files That are Almost in Order

- Selection sort?
- NO, always takes quadratic time
- Bubble sort?
- NO, bad for some definitions of "almost in order"
- Ex: BCDEFGHIJKLMNOPQRSTUVWXYZA
- Insertion sort?
- YES, takes linear time for most definitions of "almost in order"
- Mergesort or custom method?
- Probably not: insertion sort simpler and faster

Quicksort

- Sort an array $A[p . . r$]
- Divide

- Partition the array A into 2 subarrays $A[p . . q]$ and $A[q+1 . . r]$, such that each element of $A[p . . q]$ is smaller than or equal to each element in $A[q+1 . . r]$
- Need to find index q to partition the array

Quicksort

- Conquer
- Recursively sort $A[p . . q]$ and $A[q+1 . . r]$ using Quicksort
- Combine
- Trivial: the arrays are sorted in place
- No additional work is required to combine them
- The entire array is now sorted

QUICKSORT

Alg.: QUICKSORT(A, $p, r) \quad$ Initially: $p=1, r=n$
if $p<r$
then $q \leftarrow \operatorname{PARTITION}(A, p, r)$
QUICKSORT (A , p, q)
QUICKSORT $(A, q+1, r)$
Recurrence:

$$
\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{q})+\mathrm{T}(\mathrm{n}-\mathrm{q})+\mathrm{f}(\mathrm{n}) \quad(f(n) \text { depends on PARTITION }())
$$

Partitioning the Array

- Choosing PARTITION()
- There are different ways to do this
- Each has its own advantages/disadvantages
- Hoare partition (see prob. 7-1, page 159)
- Select a pivot element \times around which to partition
- Grows two regions

$$
\begin{aligned}
& A[p \ldots i] \leq x \\
& x \leq A[j \ldots r]
\end{aligned}
$$

Example

Example

Partitioning the Array

Alg. PARTITION (A, p, r)

1. $x \leftarrow A[p]$
2. $i \leftarrow p-1$
3. $j \leftarrow r+1$
4. while TRUE
5. do repeat $j \leftarrow j-1 \quad A:$
6.
7. do repeat $i \leftarrow i+1$ until $A[i] \geq x$
8.
9. 11. else return j

1. until $A[j] \leq x$
if $\mathrm{i}<\mathrm{j}$
Each element is visited once! then exchange $A[i] \leftrightarrow A[j]$

Running time: $\Theta(n)$ $n=r-p+1$

Recurrence

Alg.: QUICKSORT($A, p, r) \quad$ Initially: $p=1, r=n$
if $p<r$
then $q \leftarrow \operatorname{PARTITION}(A, p, r)$
QUICKSORT (A , p, q)
QUICKSORT $(A, q+1, r)$
Recurrence:

$$
T(n)=T(q)+T(n-q)+n
$$

Worst Case Partitioning

- Worst-case partitioning
- One region has one element and the other has $n-1$ elements
- Maximally unbalanced
- Recurrence: $q=1$

$$
\begin{aligned}
& T(n)=T(1)+T(n-1)+n, \\
& T(1)=\Theta(1) \\
& T(n)=T(n-1)+n
\end{aligned}
$$

$$
=n+\left(\sum_{k=1}^{n} k\right)-1=\Theta(n)+\Theta\left(n^{2}\right)=\Theta\left(n^{2}\right) \quad \Theta\left(n^{2}\right)
$$

Best Case Partitioning

- Best-case partitioning
- Partitioning produces two regions of size n/2
- Recurrence: $q=n / 2$

$$
\begin{aligned}
& T(n)=2 T(n / 2)+\Theta(n) \\
& T(n)=\Theta(n \lg n)(\text { Master theorem })
\end{aligned}
$$

Case Between Worst and Best

- 9-to-1 proportional split

$$
Q(n)=Q(9 n / 10)+Q(n / 10)+n
$$

- Using the recursion tree:
longest path: $Q(n) \leq n \sum_{i=0}^{\log _{10 / 9} n} 1=n\left(\log _{10 / 9} n+1\right)=c_{2} n \lg n \quad \Theta(n \lg n)$
shortest path: $Q(n) \geq n \sum_{i=0}^{\log _{10} n} 1=n \log _{10} n=c_{1} n \lg n$
Thus, $Q(n)=\Theta(n \lg n)$

How does partition affect performance?

- Any splitting of constant proportionality yields $\Theta(n l g n)$ time !!!
- Consider the ($1: n-1$) splitting:
ratio=1/(n-1) not a constant !!!
- Consider the ($n / 2: n / 2$) splitting:

$$
\text { ratio }=(n / 2) /(n / 2)=1 \text { it is a constant !! }
$$

- Consider the ($9 n / 10: n / 10$) splitting:

$$
\text { ratio }=(9 n / 10) /(n / 10)=9 \text { it is a constant !! }
$$

How does partition affect performance?

- Any $((a-1) n / a: n / a)$ splitting:

$$
\operatorname{ratio}=((a-1) n / a) /(n / a)=a-1 \text { it is a constant !! }
$$

Performance of Quicksort

- Average case
- All permutations of the input numbers are equally likely
- On a random input array, we will have a mix of well balanced and unbalanced splits
- Good and bad splits are randomly distributed across throughout the tree

Alternate of a good and a bad split

Nearly well
balanced split

- Running time of Quicksort when levels alternate between good and bad splits is $O(n l g n)$

